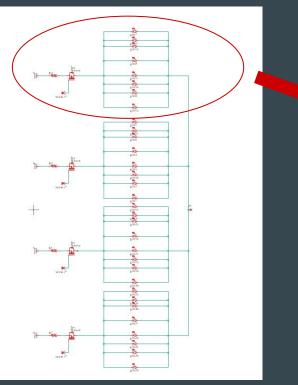
# **Final Presentation**




NORTHERN ARIZONA UNIVERSITY Department of Mechanical Engineering RGB Flow Sensor Team Gavynn Breed Ryan Schuster Yixiang Zhang Hengling Zhu

Hengling, 11/2/21, RGB Flow Sensor Team, 21F11

# Prototyping



# Prototyping



10 ND LED15 LED9 103 1005540 R3 DNS-\* LED16 LED8 LED13

Figure 2: Partial Prototype Circuit

Figure 1: Complete Prototype Circuit

### **Project Description**

• This project is based on flow visualization technology to design and produce a LED matrix to realize the light source supply of the particle image velocimetry (PIV) system.

• The RGB light system has three separate channels that control three different colors individually and operate within a \$1000 budget. This project provides the same functions of laser equipments with less money.

# Prototyping

• The Red and Blue LEDs pulse at a frequency of 1000 hz

• The Green and White LEDs pulse at 500 hz

• Circuit is simplified due to the lower voltage and current within the prototype

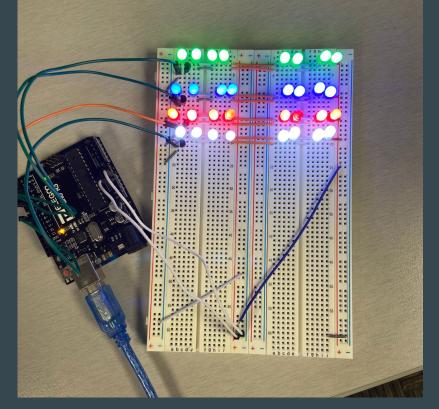



Figure 3: Prototype #1



### **Design Description: Circuit**

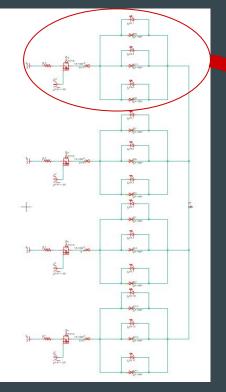



Figure 4: Complete Circuit Design

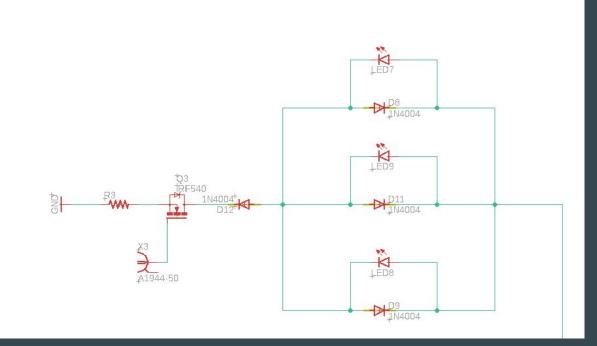
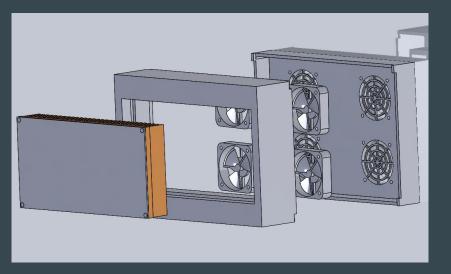
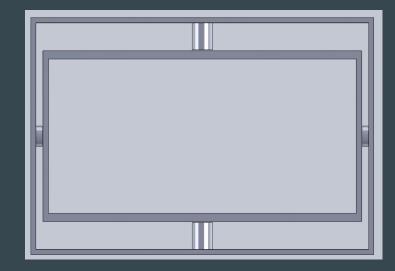




Figure 5: Partial Circuit Design


# **Design Description: SolidWorks Design #1**



### Figure 6: Housing

#### <u>Functionality</u>

- Fitted Design
- Vents for hot air escape
- 4 Fans blowing air at heat sink to help with cooling
- Heat sink attached to circuit board



### Figure 7: Section view of top housing

#### <u>Material</u>

- Copper Heat sink
- 3d-printed PLA plastic

# Design Description: SolidWorks Design #2

### Functionality

- Screw Design
- Vents and louvers for hot air escape
- Heat sink and six fans help cooling

### Material

- Sheet metal for housing
- Copper heat sink
- Plastic fans

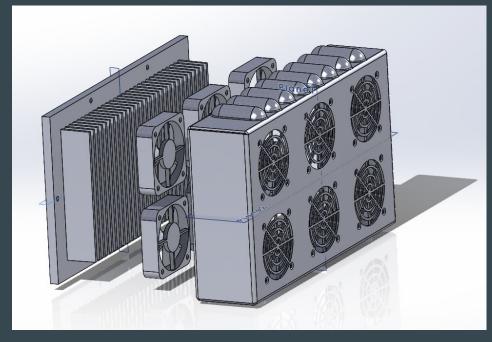



Figure 8: Exploded View of Design #2

# **Design Requirements**

### Customer Requirement

- High frequency
- Short pulses
- Adjustable intensity
- Reliability
- Durability
- Adjustable color
- Minimal jitter and delay
- Cost

### Validation

- Prototype shows that a high frequency, with a short pulse is possible with a transistor gate.
- The prototype also demonstrates an adjustable intensity due to the previous requirements.
- By adjusting the intensity of each colors of light outputted, the average color can be adjusted.
- The Reliability, Jitter and Delay will be tested through 2 of the technical analysis.

### Hengling, 11/2/21, RGB Flow Sensor Team, 21F11

# **Design Requirements: Analytical Analysis - Theoretical**

- 1. Heat Transfer analysis
- Copper heat sink
- LEDs and Circuit Boards
- SolidWorks, Matlab, HandWritten Calculations

- 2. Circuit Analysis
- Number of LEDs in the system
- Values for needed resistors and capacitors
- Exact layout of the circuit board

# **Design Requirements: Analytical Analysis - Experimental**

### 3. Luminous Flux Analysis

- Lumens (Im)
- Overall brightness of light source
- Used for light intensity calculations

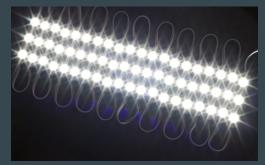



Figure 10: Bright LEDs

### 4. Synchronization Analysis

- Measure the time needed between signal sent and the light out of the LEDs
- Make sure the camera and the LED light can work simultaneously



Figure 11: SYNC setting in Flash Head

Yixiang, Hengling, 11/2/21, RGB Flow Sensor Team, 21F11

# **Design Validation - Failure Modes and Effects Analysis (FMEA)**

### Table 1: FMEA

| Part # and<br>Functions | Potential Failure Mode                   | Potential Effect(s) of Failure                                      | Severity<br>(S) | Potential Causes and<br>Mechanisms of Failure | Occurance<br>(O) | Current<br>Design<br>Controls<br>Test | Detection<br>(D) | RPN | Recommended Action               |
|-------------------------|------------------------------------------|---------------------------------------------------------------------|-----------------|-----------------------------------------------|------------------|---------------------------------------|------------------|-----|----------------------------------|
| LED Chips               | Temperature Induced Deformation          | Decreased Light Intensity, Failure to operate                       | 8               | Assembly of cooling syste                     | 4                | Multimeter                            | 1                | 32  | Replace LEDs                     |
| Heat Sink               | Thermal Fatigue                          | Unable to cool LEDs                                                 | 10              | Dust and debris on heat s                     | 4                | Compressed                            | 1                | 40  | Clean heatsink frequently        |
| Fan (bearing)           | Corrosion, Yielding                      | Decreased cooling                                                   | 2               | Overstressing                                 | 5                | ;                                     | 3                | 30  | Replace Fan                      |
| Fan (blade)             | Brittle Fracture                         | Decreased cooling                                                   | 3               | Poor maintenace, and as                       | 2                | 2                                     | 5                | 30  | Replace Fan                      |
| Fan (motor)             | Thermal Fatigue and Aging                | Decreased cooling                                                   | 3               | Overheating, Poor mainte                      | 1                |                                       | 5                | 15  | Replace Fan                      |
| Circuit Board           | Thermal Fatigue, Temperature deformation | Light intensity, Light display, Circuit Control                     | 10              | Light failure                                 | 2                | Multimeter                            | 1                | 20  | Replace Circuit Board            |
| BNC Port                | Thermal Fatigue                          | Short circuiting, breaking circuit                                  | 4               | Debris, lack of cooling                       | 1                |                                       | 3                | 12  | Replace Port                     |
| Rectifier Diode         |                                          | Dimmed lights, poor power suppply, revered current shorting<br>LEDs | 5               | Over voltage,current,heat                     | 2                | Multimeter                            | 1                | 10  | Replace Diode                    |
| NPN Transistor          | Avalanche failure                        | Unable to control voltage and current                               | 6               | Over voltage                                  | 7                | Multimeter                            | 7                | 42  | Replace Transistor               |
| Housing                 | Ductile Rupture, Brinelling              | Parts won't be encased, system can not function properly            | 7               | Heavy loads, bad assemb                       | 2                |                                       | 2                | 28  | Evaluate design and make changes |
| Wiring                  | Thermal Fatigue                          | Dimmed lights, poor power suppply                                   | 4               | Lack of cooling, Over<br>Voltage/current      | Ę                | Multimeter                            | 1                | 20  | Replace Circuit Board            |

# **Design Validation: Testing and Equipment**

Equipment and Testing :

- Multimeter Used to measure values of main electric components
- Photoresistor Used to measure illumination of LEDs
- High Resolution Camera Used to synchronize with light pulse
- Thermocouple Used to measure temperature
- Heat Source Used to heat up housing material to see

# Schedule and Budget

| Finalizing Design                |      |          |          |  |  |  |  |  |
|----------------------------------|------|----------|----------|--|--|--|--|--|
| Final design solution 2          | 100% | 10/16/21 | 10/18/21 |  |  |  |  |  |
| Solid works parts                | 100% | 10/24/21 | 11/1/21  |  |  |  |  |  |
| Analytical analysis memo         | 100% | 10/22/21 | 10/24/21 |  |  |  |  |  |
| solidworks drawings and assembly | 60%  | 11/1/21  | 11/7/21  |  |  |  |  |  |
| solidworks analytic              | 0%   | 11/1/21  | 11/8/21  |  |  |  |  |  |
| Final CAD and Protoype           |      |          |          |  |  |  |  |  |
| Final Report                     | 0%   | 11/5/21  | 11/14/21 |  |  |  |  |  |
| FinalCAD                         | 0%   | 11/9/21  | 11/19/21 |  |  |  |  |  |
| Final BOM                        | 0%   | 11/9/21  | 11/19/21 |  |  |  |  |  |
| Final Prototype                  | 0%   | 11/15/21 | 12/3/21  |  |  |  |  |  |
| Prototype Testing                | 0%   | 11/15/21 | 11/30/21 |  |  |  |  |  |
| Website                          | 0%   | 11/15/21 | 12/7/21  |  |  |  |  |  |

Figure 12: Schedule

### Table 2: Bill of Materials

| No.                   | Qt. | Name            | Function                                                                | Cost     |
|-----------------------|-----|-----------------|-------------------------------------------------------------------------|----------|
| 1                     | 75  | LED Chip        | Convert the electrical energy into light                                | \$300    |
| 2                     | 1   | Heat Sink       | Fill gaps between the fan and cooling part, make cooling more efficient | \$50     |
| 3                     | 4   | Fan             | Push air and keep cooling                                               | \$24     |
| 4                     | 1   | Circuit Board   | Control the system                                                      | \$150    |
| 5                     | 4   | BNC port        | Cable Input port for the TTL signal                                     | \$10     |
| 6                     | 4   | Rectifier diode | Keep the current from flowing in<br>reverse through the LEDs            | \$5      |
| 7                     | 4   | NPN Transistor  | An N-Channel power transistor to stabilize the pulse input.             | \$5      |
| 8                     | 1   | Housing         | Holds the system together                                               | \$55     |
| 9                     | 32  | Standard LED    | Prototype LEDs                                                          | \$0      |
| 10                    | 1   | Arduino         | Prototype Power Source and Control                                      | \$0      |
| 11                    | 2   | BreadBoard      | Prototype circuit Base                                                  | \$0      |
| 12                    | -   | Misc            | Miscellaneuos components such as wires                                  | \$0      |
| 13                    | 6   | Screws          | Holds together housing assemblies                                       | \$2      |
| Total Budget (\$1000) |     | \$1000)         |                                                                         | \$601.00 |

Hengling, 11/2/21, RGB Flow Sensor Team, 21F11

# **Thank You** Are there any questions?